Applications of Exponential Functions

GROWTH AND DECAY COMPOUND INTEREST

Using exponential functions

e=2.71828

• The exponential function $f(x) = 1.26e^{0.247x}$ models the gray wolf population of the Rocky Mountains, f(x), x years after 1978. If the trend continues, project the gray wolf population in 2015.

Growth and Decay Word Problems

• The equation $y = ab^t$ is used to represent a variety of growth and decay word problems—depending on the type of problem b will change

y =ending amount

a = initial amount

t = time (number of time cycles)

b = base

- growth (1 + r) (where r = rate)
- decay (1 ► r)
- half-life (.5)
- doubles, triples, etc. (2, 3, etc.)

Examples

- The population of Big Bang Town in the year 2000 was 2300 people. Assume that the population is
- increasing at a rate of 2.25% per year. What will be the population in the year 2030? in 2050?

the population in the year 2030? in 2050?

$$y = a (1+1) = 2300(1+.02)$$
 $4,483$

Examples

• The half-life of Howardium-234 is 25 days. If you start with 70 grams initially, how much is left after 100 days? after 400 days?

70 $(.5)^{3}$ = 70 $(.5)^{4}$ - 4.359

• When will there only be 10 grams remaining?

Compound Interest

- p=initial investment
- $r = \text{interest rate } (\frac{\text{change}}{\text{to advisor}})$ n = # of times compounded in a year $y = p \left(1 + \left(\frac{r}{n}\right)\right)^{nu}$
- - Annually
 - Monthly n=12
 - Quarterly n=4
 - Weekly n=52
 - Bimonthly n = 24
- *t*=time in years

Compound Interest Examples 9= P(1+5)

• Raj invests \$500 into an account earning 7% annual interest compounded monthly. How much will he have after 15 years?

have after 15 years?
$$y = 500 \left(1 + \frac{.07}{12}\right)^{(12)(15)}$$

$$y = 47$$

Compound Interest Examples

- Mrs. Wolowitz invests \$10,000 into an account earning 3.6% annual interest compounded weekly. How much will she have after 28 months? $\frac{28}{12}$
- When will she have accrued \$20,000?

Continuously Compounded Interest

- *p*=principal (initial investment)
- *e*=2.718
- r=interest rate
- *t*=time

$$y = pe^{rt}$$

Compound Interest Examples

• Penny invests \$23,000 into an account earning 6.2% annual interest compounded continuously. How much will she have after 6 years?

65 Compound Interest Examples

• Leonard invests \$1,000 at an annual interest rate of 5% compounded continuously. How much money will he have after 5 years?

y=10000 \$1284,03

Milhon will he have \$3,000?

$$y = \alpha(1+1)^{t}$$
 $y = \alpha(1-1)^{t}$
 $y = p(1+1)^{t}$
 $y = p(1+1)^{t}$
 $y = pe^{t}$